EPFL- Spring 2025 Differential Geometry HT: G. Moschidis
SOLUTIONS: Series 5 Rlemannlan geometry 21 Mar. 2025

5.1 (a) Let X € T'(M) be a Killing vector field on the Riemannian manifold (M, g). Show that,
for any V,W € I'( M),

where V is the Levi-Civita connection of g. Deduce that, if v : (a,b) — M is a geodesic
of (M, g), then the function ¢ — g(X|,), ) is constant for ¢ € (a, b)

Remark. Any function F' : TM — R such that F(y(t),7(t)) is constant when v is a
geodesic is called a constant of motion for the geodesic flow.

(b) Let ¢ : (—1,1) = R%, ¢(u) = (z(u),y(u)) be a smooth curve parametrized with unit speed
and contained in the upper half plane, i.e. y(u) > 0 for all u € (—1,1). Let S be the
surface of revolution in R® obtained by rotating the curve ¢ around the z-axis, i.e. S is
parametrized by the map ¥ : (—1,1) x [0, 27),

U (u, ) = (x(u), y(u) cos(p), y(u) sin(y)).

Let also g be the metric induced on S by the Euclidean metric g in R3. Show that
the vector field & = % is a Killing vector field on (S, g). Find a closed formula for any

geodesic v : (=T, T) — (S, g), t = (u(t), p(t)) (Hint: Use the fact that g(+, ®) and g(%,%)

are conserved along v to obtain a simple expression for 7 = (UC%‘, %‘f).

Solution. (a) Recall that a Killing vector field X of (M, g) satisfies the relation
EXg =0

(see Exercise 4.3). Therefore, for any V,W € I'(M), we can calculate using the fact that Lx
commutes with contractions and satisfies the product rule with respect to tensor products of tensors:

X(g(V,W)) = Lx (g(V,W)) = (Lxg)(V,W)+g(LxV,W)+g(V, LxW) = 0+g([X, V], W) +g(V, [ X, W]).

On the other hand, we can express the left hand side of the above relation using the covariant
derivative Vx with respect to the Levi-Civita connection of g as follows:

X(g(V,W)) = g(VxV, W) +g(V,VxW).
Since the left hand sides of the above two relations are the same, we obtain:

g(VxV,W) +g(V,VxW) = g([X, V], W) + g(V,[X, W])
= g(VxV = [X,V],W) +g(V,.VxW — [X,W]) = 0. (1)

Using the fact that the Levi-Civita connection is torsion-free, i.e.
VxY =Vy X+ [X,Y] forany X,Y € I'(M), (2)
we obtain from (1) using (2) for Y =V, W:
g(Vv X, W) +g(V,VwX) =0 (3)
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Let v : (a,b) — M be a smooth curve. Using (3) for V =W = %, we infer
9(V5X.9) =0.
Assuming, in addition, that 7 is a geodesic, i.e.
Viy =0,
we can readily calculate:

d . . : : :
i.e. g(X|,@),7(t)) is constant along for ¢t € (a,b).

(b) Let us denote with (7,7, z) the Cartesian coordinates on R3, so that
g5 = (A7)’ + (dy)” + (d2)*.

We can readily calculate that the pull-back metric ¢ = V.gg in the (u, @) coordinates on S takes the
following form (noting that ¥ maps (u, ¢) — (Z,7, 2) = (x(u), y(u) cos ¢, y(u)sinp)):

9=V.gg
—‘I’(( )% + (dy)* + (dz)°)
= (dz ) (d(y(w) cos<p)) + (d(y(u) simp))2
= (¢(u )) u® + (§(u))* cos sOdu + (y(u))? sin® pde® + (y(u))? sin® pdu® + (y(u))? cos® pdip?
= ((@(u)” + (5(w)?) du® + (y(u))*de?.

In view of our assumption that ((u) = (z(u),y(u)) is parametrized with unit speed, we have

(@(w)” + (Y(u)* =1

and, therefore:
g = du® + (y(u))*dy”.
0

In the (u, ¢) coordinate system on S, the vector field & = 5, 182 coordinate vector field. There-
fore, the flow map F; : S — S associated to ® is simply the coordinate translation (u, @) — (u, o+t
mod 27) (geometrically, this corresponds to a rotation of S C R* around the x axis). Since the
components of the metric g in the (u, ) coordinates are independent of ¢, we infer that, for each

t € R, the flow map F; is an isometry of (S, g) and, therefore, ® is a Killing vector field for (S q9).

Remark. In general, if (z!,...,2") is a local coordinate Chart on a manifold M and X = 8 -2 the

flow map associated to X is simply the translation in the z! coordinate. Therefore, for any tensor
field T on M of type (k,1), we have

0 i1 g

191 Ozl Ji-Ji°
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In particular, Lx7T = 0 if and only if the components T“"‘i’“jlmjl in the (z',... 2™) coordinate chart

do not depend z!.

In the example of this exercise, we could have also inferred that the flow of ® is an isometry of
(S, g) by noting that, when viewed as a vector field on R®, @ is the generator of rotations for (R3, gz),
which are isometries for g and leave the surface S invariant.

Let v : (=T,T) — S, t = (u(t),¢(t)) be a geodesic. We know that g(¥,%) is constant along v;
by reparametrizing v, we can assume without loss of generality that g(%,7) = 1, i.e.

@2(8) + (y(u() @ (1) = 1.
KA

Moreover, since ® = 5~ is a Killing vector field for (S, g), by part (a) of this exercise we know that
(%, %) is also constant along ~, i.e. there exists some A € R such that

(y(u(1)*p(t) = A.

Combining the above two relations, we obtain:

du A2
()= 1 ——
" \/ (y(u(t)))
oy

"= )

In principle, the above system can be “explicitly” solved: If GG is a function such that

1
G(z) = ——
1 — A
(y(2))?

then

5.2 The Poincaré half-plane is the domain H? = {(z,y) € R* : y > 0} in R? equipped with the

Riemannian metric
_da? + dy?

2
(a) Setting z = x + 1y, show that the map f : H> — H? defined by

gH

az+b
cz+d

f(z) =

for a,b,c,d € R with ad — bc > 0 is an isometry for gy.
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(b) Show that the geodesic equation for gy, takes the form

. 2ry . Yy —1x
iP=— Y= .
Y Y

(¢c) Show that ii;yQ and ?% are constant along a geodesic (i.e. are constants of motion for the
geodesic flow). Is the conserved quantity ?% a constant of motion associated to a Killing
vector field of (H?, gy), in the spirit of Exercise 5.17 What is the shape of a geodesic curve
n ([H27 90—1)7

Remark. The Poincaré half-plane is a model for the hyperbolic plane.

Solution. (a) It suffices to check that the statement is true in the following two cases:
1. c=0and d=1,
2.a=1,b=d=0,c=—1.

The general map f can then be written as a sequence of (at most three) compositions of special maps
falling in the categories 1 or 2 above; since the composition of isometries is again an isometry, the
general statement would follow.

o The case f(z) = az+b, a > 0: It can be readily verified that, in this case, the map f : H> — H?
is a bijection which is also bi-continuous. Thus, in order to prove that it is an isometry, we
only have to check that

gH = fugn-
Since f : H? — H? maps (z,y) to (z,7) = (Re(f(z+1y)),Im(f(z +iy))) = (az +b, ay), we can
readily compute

dz? + dy?
= 1. (120
Yy
_ (dax +0))" + (d(ay))”
(ay)?
a’dz? + a’dy?
- a2y
dz?* + dy?
pr— T
e The case f(z) = —%: In this case it can be also readily verified that the map f: H? — H? is a
bijection which is also bi-continuous. Since f : (z,y) = (Z,7) = (Re(f(z+iy)), Im(f(z+iy))) =
(%, %), we can readily calculate
ety ety
dz? + dy?
Jegn = [u (T>
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2

(1) + (k)
(%)

(s — wd(z)) + (5 + vi(5et) )

(2 jU‘Jr 2)?
2 dy? 2

_ (x2+y )? +22dr 5 2+y (IQj—zﬂ) + 2 (d(ﬁ)) + (22+y2)? - denyiy2d<x2+y ) Ty (d(@))
L P dy® + (2 + y*)(2zdx + 2ydy)d( ! )+ (2 + y2)3<d( ! ))2

y2 .’,U2 + y2 ZEQ _|_y2

1 2 2 2 2 2 2 d(2* 4+ y?) 2 213 d(z® + y?)\2
= dz® + dy? + (2 + y*)d(z® + y*) [ — —(x2+y2)2} + (2° +y°) (— —(x2+y2)2>

_ 2 _ 2

= — | do® + dy? — (2° + y*) " (d(2® + ¥7))" + (2 + ) (d(2® + ¢?)) )

1
v
1
? (dx +dy )
gH

(b) Let us start by computing the Christoffel symbols for gy: Using the index 1 for the x variable
and 2 for the y variable, we have

g =92=y7 g2=0 and g''=g"=y"

and, using the formula I‘fj = %gkl (81‘91]‘ + 091 — 8lgij):
Fil = Féz = 1?2 =0, Flz = 1122 = P%l = —y_l-

Therefore, if ¢ — (x(t), y(t)) is a geodesic, the geodesic equation #* + I'};i'47 = 0 takes the form

T—— =0, 4

y (4)
2 9

. Yy -

1y — =0. 5)
; ()

(c) Using the geodesic equations (4)—(5), we can easily verify that, if ¢t — v(¢) = (z(t),y(t)) is a
geodesic for (H? gy) and

Y
T
E?
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then p p

—E=—P=0.

dt— — dt

Note that F = gy(,7) and P = gy(7, %). In particular, in the language of Ex. 5.1, P is the constant
of motion associated to the Killing vector field % of (H?, gi) (note that it is straightforward to verify
that a% is a Killing vector field, since the components of gy in the (z,y) coordinates do not depend
on ).

In order to determine the shape of a geodesic 7, we will have to distinguish two cases, depending
on the value of the conserved quantity P (note that £ > 0 unless 7 is the constant curve):

e If P =0, then the expression for P implies that & = 0, i.e. v (when maximally extended) is
the half line {z = const} N {y > 0}.

e If P # 0, then we can solve for z and g from the expressions for E, P as follows:
& =y*P,
y = +y/E — y? P2

Since P # 0 and, therefore, & # 0, we can use x as a parametrization of our curve ~, i.e. think
of v as a curve x — (z,y(x)). In this case, we can calculate

dy =Y i/, [E
W_y_ Vv 7 <ﬁ—2>:il.

de Y dx
Notice that this is the ODE satisfied by the graph of a circle: If we integrate both sides, we

obtain that
E
Vi v =)

for some constant x, € R. In particular, in this case, v(f) moves along a half-circle of radius

\\/TF\ which intersects y = 0 orthogonally.

5.3 Let (M",g) be a smooth Riemannian manifold and let 7 : [0,1] — M be a geodesic.

(a) Show that there exist a set of vector fields { E;}7; defined along the curve v satisfying all
of the following conditions:

n

o For any ¢ € [0,1], the tangent vectors {£;| )}, at y(t) form an orthonormal basis
of T’y(t)M-
o Eil|, is parallel to §(t).
o The vector fields E; are parallel translated along v, i.e. V5E; =0,i=1,...,n.
(b) Show that, if {E;}" ;| is a set of vector fields along v as above and X is any other vector

field along 7, then X is parallel-translated along v if and only if the components of X,
in the basis {E;|,«)}i, of T, M are constant as functions of ¢.
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Solution. (a) Let us pick a basis {}}, for the vector space T’ M which satisfies the following
properties:

(V)
S SO
o {& 1}, is orthonormal with respect to gl (o).

Note that such a basis can always be chosen (in a non-unique way) using the Gram-Schmidt process
starting from any (not necessarily orthonormal) basis {&;}™, for which & = #(0).

For any ¢ = 1,...,n, let E; € I', be the the parallel translation of §; along v, i.e. the unique
vector field along v which satisfies

VﬁEZ' =0 and Ei|t:0 = fz
We will show that {E;}!, satisfies the required conditions:

e For any i,7 € {1,...,n}, we have

d )
E(Q(Ei, Ejlyw) =4(9(Ei, E))) = g(V4E;i, Ej) + g(Ei, Vi E;) =0

since V4 E; = V;E; = 0. Therefore,

9(Ei Bj) ) = 9(Ei Ej) o) = 9(&, &) = 03,
i.e. {E;} is orthonormal.

3(t)

e Since v is a geodesic, V4 = 0; therefore, ||¥(¢)|| is constant in ¢ and the vector field T = Bl

satisfies

V:T'=0 and T|= =&
By the uniqueness of parallel transport, Fy =T, i.e. Fy || 5.

(b) Let {E;}"; be a parallel-translated orthonormal basis of the tangent space of M along 7 as
in part (a). For any X € I, the components X* of X with respect to the basis { F;}?_, are functions
X":[0,1] = R so that

Xy = X () Eily)-

Therefore, we compute using the product rule for V:

Vi X = Vi (X'(0) Eily)
dX? ,
7 + X'V,
dX?
= F,
dt

since V4 F; = 0. Therefore, V5 X = 0 if and only if %i =0fori=1,...,n.
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5.4 Let Q C R" be an open domain and let ¥ : Q — RY (N > n) be a smooth immersion; let also
g be the Riemannian metric induced on € by the Euclidean metric gz on RY. Recall that, for

for any point p € Q and any local coordinate system (z!,... z") around p, the tangent space

TupP(2) of the sumbanifold ¥(Q) C RY (ie. the image of the map d¥, : T,Q — Ty)RY)
is spanned by the vectors {0; ¥} ,. Let us denote with Hg(p) : TyRY — Ty P(Q) the
orthogonal projection with respect to the Euclidean inner product on Tq,(p)[RN. Show that the
Christoffel symbols of the Levi-Civita connection for ¢ in the Cartesian coordinate system
(x',...,2") on Q C R satisfy for any p €

T ( 0*w
YO\ Qaidai

(#)) = T @)Ov ()

Solution. Let (z',...,2") be the Cartesian coordinate system on  C R" and (y',...,y") the
Cartesian coordinate system on RY. The induced metric g on by the immersion ¥ takes the
following form:

0 0 0wt owh ov oV

8:171)’ (835] ) =0 ort O’ <8x” O’ >9E

Therefore, we compute that the Christoffel symbols of the Levi-Civita connection of g take the
following form:

gij = 9gE (‘1’*(

1
Il = 59“ (0i915 + 0591 — D1945)
1 oA OB ovA OB oA gUB

= 9 OanTyr ) + 00 )~ 00an 7))

ny (02\@4 v’ +a\1/A *wr N A A +3qu o*wr
=29 B\ griod 0w T od  0ridw | 0ridor 0z | 0dt  0ridw

A A S A & )
oxtoxt  OxJ oxt  O0xiox!

Ox!’ Oxi0xI ' 9E
where, in passing to the last line in the calculation above, we used the fact that 045 = dga to show
g
that 045 02wl owP _ 0AB 02wl 0UL o the blue terms cancel out). Therefore,

Oxidx!  Oxt Oxidxzl  Oxt >
L B
Y Ok Ox!’ OxiQxd "985 Qxk’
In order to complete the proof of the exercise, we therefore have to show that the projection operator
Hg(p) takes the following form for any Z € Ty, RY:

ov ov
My (2) = <%(p), Z>9E9kl|p@(p).

To this end, we simply have to verify that the right hand side in the relation above vanishes if
Z 1L Typ¥(Q2) and is equal to Z if Z € Ty V() (since this is the definition of the projection
operator Ty, ).
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o If 7 1 Tyup¥(Q), then (Z,X),, = 0 for any X € Ty, V(). In particular, since 0,¥(p) €
Ty ¥ (), we have (Z,0,¥(p))y, = 0 and, therefore,

(Gt ®) 00,9 b =0
e In order to verify that

ov ov .
%(P)aZ%EQR”p@@) =7 if Z€TypV(Q),

it suffices to check that this is true for Z = 9;¥(p), j = 1,...,n, since these vectors span
T\p(p)\I/(Q). Thus:

U O w 009 L 9Y,  9Y

(p)-
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