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5.1 (a) Let X ∈ Γ(M) be a Killing vector �eld on the Riemannian manifold (M, g). Show that,
for any V,W ∈ Γ(M),

g
(
∇VX,W

)
+ g
(
∇WX, V

)
= 0,

where ∇ is the Levi-Civita connection of g. Deduce that, if γ : (a, b) → M is a geodesic
of (M, g), then the function t → g(X|γ(t), γ̇) is constant for t ∈ (a, b)

Remark. Any function F : TM → R such that F (γ(t), γ̇(t)) is constant when γ is a
geodesic is called a constant of motion for the geodesic �ow.

(b) Let ζ : (−1, 1) → R
2, ζ(u) =

(
x(u), y(u)

)
be a smooth curve parametrized with unit speed

and contained in the upper half plane, i.e. y(u) > 0 for all u ∈ (−1, 1). Let S be the
surface of revolution in R3 obtained by rotating the curve ζ around the x-axis, i.e. S is
parametrized by the map Ψ : (−1, 1)× [0, 2π),

Ψ(u, φ) =
(
x(u), y(u) cos(φ), y(u) sin(φ)

)
.

Let also g be the metric induced on S by the Euclidean metric gE in R
3. Show that

the vector �eld Φ = ∂
∂φ

is a Killing vector �eld on (S, g). Find a closed formula for any

geodesic γ : (−T, T ) → (S, g), t →
(
u(t), φ(t)

)
(Hint: Use the fact that g(γ̇,Φ) and g(γ̇, γ̇)

are conserved along γ to obtain a simple expression for γ̇ = (du
dt
, dφ
dt
).

Solution. (a) Recall that a Killing vector �eld X of (M, g) satis�es the relation

LXg = 0

(see Exercise 4.3). Therefore, for any V,W ∈ Γ(M), we can calculate using the fact that LX

commutes with contractions and satis�es the product rule with respect to tensor products of tensors:

X
(
g(V,W )

)
= LX

(
g(V,W )

)
= (LXg)(V,W )+g

(
LXV,W

)
+g
(
V,LXW

)
= 0+g

(
[X, V ],W

)
+g
(
V, [X,W ]

)
.

On the other hand, we can express the left hand side of the above relation using the covariant
derivative ∇X with respect to the Levi-Civita connection of g as follows:

X
(
g(V,W )

)
= g
(
∇XV,W

)
+ g
(
V,∇XW

)
.

Since the left hand sides of the above two relations are the same, we obtain:

g
(
∇XV,W

)
+ g
(
V,∇XW

)
= g
(
[X, V ],W

)
+ g
(
V, [X,W ]

)
⇒ g

(
∇XV − [X, V ],W

)
+ g
(
V,∇XW − [X,W ]

)
= 0. (1)

Using the fact that the Levi-Civita connection is torsion-free, i.e.

∇XY = ∇YX + [X, Y ] for any X, Y ∈ Γ(M), (2)

we obtain from (1) using (2) for Y = V,W :

g
(
∇VX,W

)
+ g
(
V,∇WX

)
= 0 (3)

Page 1



EPFL� Spring 2025

SOLUTIONS: Series 5

Di�erential Geometry III:

Riemannian geometry
G. Moschidis

21 Mar. 2025

Let γ : (a, b) → M be a smooth curve. Using (3) for V = W = γ̇, we infer

g
(
∇γ̇X, γ̇

)
= 0.

Assuming, in addition, that γ is a geodesic, i.e.

∇γ̇ γ̇ = 0,

we can readily calculate:

d

dt
g
(
X|γ(t), γ̇(t)

)
= γ̇

(
g(X, γ̇)

)
= g
(
∇γ̇X, γ̇

)
+ g
(
X,∇γ̇ γ̇

)
= 0,

i.e. g
(
X|γ(t), γ̇(t)

)
is constant along for t ∈ (a, b).

(b) Let us denote with (x̄, ȳ, z̄) the Cartesian coordinates on R3, so that

gE = (dx̄)2 + (dȳ)2 + (dz̄)2.

We can readily calculate that the pull-back metric g = Ψ∗gE in the (u, φ) coordinates on S takes the
following form (noting that Ψ maps (u, φ) → (x̄, ȳ, z̄) = (x(u), y(u) cosφ, y(u) sinφ)):

g = Ψ∗gE

= Ψ∗
(
(dx̄)2 + (dȳ)2 + (dz̄)2

)
=
(
d x(u)

)2
+
(
d(y(u) cosφ)

)2
+
(
d(y(u) sinφ)

)2
= (ẋ(u))2du2 + (ẏ(u))2 cos2 φdu2 + (y(u))2 sin2 φdφ2 + (ẏ(u))2 sin2 φdu2 + (y(u))2 cos2 φdφ2

=
(
(ẋ(u))2 + (ẏ(u))2

)
du2 + (y(u))2dφ2.

In view of our assumption that ζ(u) = (x(u), y(u)) is parametrized with unit speed, we have

(ẋ(u))2 + (ẏ(u))2 = 1

and, therefore:
g = du2 + (y(u))2dφ2.

In the (u, φ) coordinate system on S, the vector �eld Φ = ∂
∂φ

is a coordinate vector �eld. There-

fore, the �ow map Ft : S → S associated to Φ is simply the coordinate translation (u, φ) → (u, φ+ t
mod 2π) (geometrically, this corresponds to a rotation of S ⊂ R

3 around the x axis). Since the
components of the metric g in the (u, φ) coordinates are independent of φ, we infer that, for each
t ∈ R, the �ow map Ft is an isometry of (S, g) and, therefore, Φ is a Killing vector �eld for (S, g).

Remark. In general, if (x1, . . . , xn) is a local coordinate chart on a manifold M and X = ∂
∂x1 , the

�ow map associated to X is simply the translation in the x1 coordinate. Therefore, for any tensor
�eld T on M of type (k, l), we have

(
LXT

)i1...ik
j1...jl

=
∂

∂x1
T i1...ik

j1...jl
.
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In particular, LXT = 0 if and only if the components T i1...ik
j1...jl

in the (x1, . . . , xn) coordinate chart
do not depend x1.

In the example of this exercise, we could have also inferred that the �ow of Φ is an isometry of
(S, g) by noting that, when viewed as a vector �eld on R3, Φ is the generator of rotations for (R3, gE),
which are isometries for gE and leave the surface S invariant.

Let γ : (−T, T ) → S, t →
(
u(t), φ(t)

)
be a geodesic. We know that g(γ̇, γ̇) is constant along γ;

by reparametrizing γ, we can assume without loss of generality that g(γ̇, γ̇) = 1, i.e.

u̇2(t) +
(
y(u(t))

)2
φ̇2(t) = 1.

Moreover, since Φ = ∂
∂φ

is a Killing vector �eld for (S, g), by part (a) of this exercise we know that

g(γ̇, ∂
∂φ
) is also constant along γ, i.e. there exists some λ ∈ R such that(

y(u(t))
)2
φ̇(t) = λ.

Combining the above two relations, we obtain:

du

dt
(t) = ±

√
1− λ2(

y(u(t))
)2 ,

dφ

dt
(t) =

λ(
y(u(t))

)2 .
In principle, the above system can be �explicitly� solved: If Gλ is a function such that

G′
λ(x) =

1√
1− λ2

(y(x))2

,

then

Gλ

(
u(t)

)
= Gλ

(
u(0)

)
± t,

φ(t) = φ(0) +

� t

0

λ(
y(u(s))

)2 ds mod 2π.

5.2 The Poincaré half-plane is the domain H2 =
{
(x, y) ∈ R

2 : y > 0
}
in R2 equipped with the

Riemannian metric

gH =
dx2 + dy2

y2
.

(a) Setting z = x+ iy, show that the map f : H2 → H
2 de�ned by

f(z) =
az + b

cz + d

for a, b, c, d ∈ R with ad− bc > 0 is an isometry for gH.
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(b) Show that the geodesic equation for gH takes the form

ẍ =
2ẋẏ

y
, ÿ =

ẏ2 − ẋ2

y
.

(c) Show that ẋ2+ẏ2

y2
and ẋ

y2
are constant along a geodesic (i.e. are constants of motion for the

geodesic �ow). Is the conserved quantity ẋ
y2

a constant of motion associated to a Killing

vector �eld of (H2, gH), in the spirit of Exercise 5.1? What is the shape of a geodesic curve
in (H2, gH)?

Remark. The Poincaré half-plane is a model for the hyperbolic plane.

Solution. (a) It su�ces to check that the statement is true in the following two cases:

1. c = 0 and d = 1,

2. a = 1, b = d = 0, c = −1.

The general map f can then be written as a sequence of (at most three) compositions of special maps
falling in the categories 1 or 2 above; since the composition of isometries is again an isometry, the
general statement would follow.

� The case f(z) = az+b, a > 0: It can be readily veri�ed that, in this case, the map f : H2 → H
2

is a bijection which is also bi-continuous. Thus, in order to prove that it is an isometry, we
only have to check that

gH = f∗gH.

Since f : H2 → H
2 maps (x, y) to (x̄, ȳ) =

(
Re(f(x+ iy)), Im(f(x+ iy))

)
= (ax+ b, ay), we can

readily compute

f∗gH = f∗

(dx̄2 + dȳ2

ȳ2

)
=

(
d(ax+ b)

)2
+
(
d(ay)

)2
(ay)2

=
a2dx2 + a2dy2

a2y2

=
dx2 + dy2

y2

= gH.

� The case f(z) = −1
z
: In this case it can be also readily veri�ed that the map f : H2 → H

2 is a
bijection which is also bi-continuous. Since f : (x, y) → (x̄, ȳ) =

(
Re(f(x+iy)), Im(f(x+iy))

)
=( −x

x2+y2
, y
x2+y2

)
, we can readily calculate

f∗gH = f∗

(dx̄2 + dȳ2

ȳ2

)
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=

(
d
( −x
x2+y2

))2
+
(
d
(

y
x2+y2

))2
(

y
x2+y2

)2
=

(
−dx

x2+y2
− xd

(
1

x2+y2

))2
+
(

dy
x2+y2

+ yd
(

1
x2+y2

))2
y2

(x2+y2)2

=

dx2

(x2+y2)2
+ 2xdx 1

x2+y2
d
(

1
x2+y2

)
+ x2

(
d
(

1
x2+y2

))2
+ dy2

(x2+y2)2
+ 2ydy 1

x2+y2
d
(

1
x2+y2

)
+ y2

(
d
(

1
x2+y2

))2
y2

(x2+y2)2

=
1

y2

(
dx2 + dy2 + (x2 + y2)(2xdx+ 2ydy)d

( 1

x2 + y2
)
+ (x2 + y2)3

(
d
( 1

x2 + y2
))2)

=
1

y2

(
dx2 + dy2 + (x2 + y2)d(x2 + y2)

[
− d(x2 + y2)

(x2 + y2)2
]
+ (x2 + y2)3

(
− d(x2 + y2)

(x2 + y2)2

)2)

=
1

y2

(
dx2 + dy2 − (x2 + y2)−1

(
d(x2 + y2)

)2
+ (x2 + y2)−1

(
d(x2 + y2)

)2)
=

1

y2
(
dx2 + dy2

)
= gH.

(b) Let us start by computing the Christo�el symbols for gH: Using the index 1 for the x variable
and 2 for the y variable, we have

g11 = g22 = y−2, g12 = 0 and g11 = g22 = y2, g12 = 0

and, using the formula Γk
ij =

1
2
gkl
(
∂iglj + ∂jgli − ∂lgij

)
:

Γ1
11 = Γ1

22 = Γ2
12 = 0, Γ1

12 = Γ2
22 = −Γ2

11 = −y−1.

Therefore, if t →
(
x(t), y(t)

)
is a geodesic, the geodesic equation ẍk + Γk

ijẋ
iẋj = 0 takes the form

ẍ− ẋẏ

y
= 0, (4)

ÿ − ẏ2 − ẋ2

y
= 0. (5)

(c) Using the geodesic equations (4)�(5), we can easily verify that, if t → γ(t) =
(
x(t), y(t)

)
is a

geodesic for (H2, gH) and

E =
ẋ2 + ẏ2

y2
,

P =
ẋ

y2
,
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then
d

dt
E =

d

dt
P = 0.

Note that E = gH(γ̇, γ̇) and P = gH(γ̇,
∂
∂x
). In particular, in the language of Ex. 5.1, P is the constant

of motion associated to the Killing vector �eld ∂
∂x

of (H2, gH) (note that it is straightforward to verify
that ∂

∂x
is a Killing vector �eld, since the components of gH in the (x, y) coordinates do not depend

on x).
In order to determine the shape of a geodesic γ, we will have to distinguish two cases, depending

on the value of the conserved quantity P (note that E > 0 unless γ is the constant curve):

� If P = 0, then the expression for P implies that ẋ = 0, i.e. γ (when maximally extended) is
the half line {x = const} ∩ {y > 0}.

� If P ̸= 0, then we can solve for ẋ and ẏ from the expressions for E, P as follows:

ẋ = y2P,

ẏ = ±y
√
E − y2P 2.

Since P ̸= 0 and, therefore, ẋ ̸= 0, we can use x as a parametrization of our curve γ, i.e. think
of γ as a curve x → (x, y(x)). In this case, we can calculate

dy

dx
=

ẏ

ẋ
= ±

√
E
P 2 − y2

y
⇔ d

dx

(√ E

P 2
− y2

)
= ±1.

Notice that this is the ODE satis�ed by the graph of a circle: If we integrate both sides, we
obtain that √

E

P 2
− y2 = ±(x− x∗)

for some constant x∗ ∈ R. In particular, in this case, γ(t) moves along a half-circle of radius√
E

|P | which intersects y = 0 orthogonally.

5.3 Let (Mn, g) be a smooth Riemannian manifold and let γ : [0, 1] → M be a geodesic.

(a) Show that there exist a set of vector �elds {Ei}ni=1 de�ned along the curve γ satisfying all
of the following conditions:

◦ For any t ∈ [0, 1], the tangent vectors {Ei|γ(t)}ni=1 at γ(t) form an orthonormal basis
of Tγ(t)M.

◦ E1|γ(t) is parallel to γ̇(t).

◦ The vector �elds Ei are parallel translated along γ, i.e. ∇γ̇Ei = 0, i = 1, . . . , n.

(b) Show that, if {Ei}ni=1 is a set of vector �elds along γ as above and X is any other vector
�eld along γ, then X is parallel-translated along γ if and only if the components of X|γ(t)
in the basis {Ei|γ(t)}ni=1 of Tγ(t)M are constant as functions of t.
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Solution. (a) Let us pick a basis {ξi}ni=1 for the vector space Tγ(0)M which satis�es the following
properties:

� ξ1 =
γ̇(0)

∥γ̇(0)∥ ,

� {ξi}ni=1 is orthonormal with respect to g|γ(0).

Note that such a basis can always be chosen (in a non-unique way) using the Gram-Schmidt process
starting from any (not necessarily orthonormal) basis {ξ̃i}ni=1 for which ξ̃1 = γ̇(0).

For any i = 1, . . . , n, let Ei ∈ Γγ be the the parallel translation of ξi along γ, i.e. the unique
vector �eld along γ which satis�es

∇γ̇Ei = 0 and Ei|t=0 = ξi.

We will show that {Ei}ni=1 satis�es the required conditions:

� For any i, j ∈ {1, . . . , n}, we have

d

dt

(
g(Ei, Ej)|γ(t)

)
= γ̇

(
g(Ei, Ej)

)
= g
(
∇γ̇Ei, Ej

)
+ g
(
Ei,∇γ̇Ei

)
= 0

since ∇γ̇Ei = ∇γ̇Ej = 0. Therefore,

g(Ei, Ej)|γ(t) = g(Ei, Ej)|γ(0) = g(ξi, ξj) = δij,

i.e. {Ei}ni=1 is orthonormal.

� Since γ is a geodesic, ∇γ̇ γ̇ = 0; therefore, ∥γ̇(t)∥ is constant in t and the vector �eld T = γ̇(t)
∥γ̇(t)∥

satis�es
∇γ̇T = 0 and T |t=0 = ξ1.

By the uniqueness of parallel transport, E1 = T , i.e. E1 ∥ γ̇.

(b) Let {Ei}ni=1 be a parallel-translated orthonormal basis of the tangent space of M along γ as
in part (a). For any X ∈ Γγ, the components X i of X with respect to the basis {Ei}ni=1 are functions
X i : [0, 1] → R so that

X|γ(t) = X i(t)Ei|γ(t).

Therefore, we compute using the product rule for ∇:

∇γ̇X = ∇γ̇

(
X i(t)Ei|γ(t)

)
=

dX i

dt
Ei +X i∇γ̇Ei

=
dX i

dt
Ei

since ∇γ̇Ei = 0. Therefore, ∇γ̇X = 0 if and only if dXi

dt
= 0 for i = 1, . . . , n.

Page 7



EPFL� Spring 2025

SOLUTIONS: Series 5

Di�erential Geometry III:

Riemannian geometry
G. Moschidis

21 Mar. 2025

5.4 Let Ω ⊂ R
n be an open domain and let Ψ : Ω → R

N (N > n) be a smooth immersion; let also
g be the Riemannian metric induced on Ω by the Euclidean metric gE on RN . Recall that, for
for any point p ∈ Ω and any local coordinate system (x1, . . . , xn) around p, the tangent space
TΨ(p)Ψ(Ω) of the sumbanifold Ψ(Ω) ⊂ R

N (i.e. the image of the map dΨp : TpΩ → TΨ(p)R
N)

is spanned by the vectors {∂iΨ}ni=1. Let us denote with Π⊤
Ψ(p) : TΨ(p)R

N → TΨ(p)Ψ(Ω) the

orthogonal projection with respect to the Euclidean inner product on TΨ(p)R
N . Show that the

Christo�el symbols of the Levi-Civita connection for g in the Cartesian coordinate system
(x1, . . . , xn) on Ω ⊂ R

n satisfy for any p ∈ Ω:

Π⊤
Ψ(p)

( ∂2Ψ

∂xi∂xj
(p)
)
= Γk

ij(p)∂kΨ(p).

Solution. Let (x1, . . . , xn) be the Cartesian coordinate system on Ω ⊂ R
n and (y1, . . . , yN) the

Cartesian coordinate system on R
N . The induced metric g on Ω by the immersion Ψ takes the

following form:

gij = gE
(
Ψ∗(

∂

∂xi
),Ψ∗(

∂

∂xj
)
)
= δAB

∂ΨA

∂xi

∂ΨB

∂xj
=
〈∂Ψ
∂xi

,
∂Ψ

∂xj

〉
gE
.

Therefore, we compute that the Christo�el symbols of the Levi-Civita connection of g take the
following form:

Γk
ij =

1

2
gkl
(
∂iglj + ∂jgli − ∂lgij

)
=

1

2
gkl
(
∂i(δAB

∂ΨA

∂xl

∂ΨB

∂xj
) + ∂j(δAB

∂ΨA

∂xl

∂ΨB

∂xi
)− ∂l(δAB

∂ΨA

∂xi

∂ΨB

∂xj
)
)

=
1

2
gklδAB

( ∂2ΨA

∂xi∂xl
· ∂Ψ

B

∂xj
+

∂ΨA

∂xl
· ∂2ΨB

∂xi∂xj
+

∂2ΨA

∂xj∂xl
· ∂Ψ

B

∂xi
+

∂ΨA

∂xl
· ∂2ΨB

∂xi∂xj

− ∂2ΨA

∂xi∂xl
· ∂Ψ

B

∂xj
− ∂ΨA

∂xi
· ∂2ΨB

∂xj∂xl

)
= gkl

〈∂Ψ
∂xl

,
∂2Ψ

∂xi∂xj

〉
gE

(where, in passing to the last line in the calculation above, we used the fact that δAB = δBA to show

that δAB
∂2ΨA

∂xj∂xl · ∂ΨB

∂xi = δAB
∂2ΨB

∂xj∂xl · ∂ΨA

∂xi , i.e. the blue terms cancel out). Therefore,

Γk
ij

∂Ψ

∂xk
=
〈∂Ψ
∂xl

,
∂2Ψ

∂xi∂xj

〉
gE
gkl

∂Ψ

∂xk
.

In order to complete the proof of the exercise, we therefore have to show that the projection operator
Π⊤

Ψ(p) takes the following form for any Z ∈ TΨ(p)R
N :

Π⊤
Ψ(p)(Z) =

〈∂Ψ
∂xl

(p), Z
〉
gE
gkl|p

∂Ψ

∂xk
(p).

To this end, we simply have to verify that the right hand side in the relation above vanishes if
Z ⊥ TΨ(p)Ψ(Ω) and is equal to Z if Z ∈ TΨ(p)Ψ(Ω) (since this is the de�nition of the projection
operator Π⊤

Ψ(p)).
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� If Z ⊥ TΨ(p)Ψ(Ω), then ⟨Z,X⟩gE = 0 for any X ∈ TΨ(p)Ψ(Ω). In particular, since ∂lΨ(p) ∈
TΨ(p)Ψ(Ω), we have ⟨Z, ∂lΨ(p)⟩gE = 0 and, therefore,

〈∂Ψ
∂xl

(p), Z
〉
gE
gkl|p

∂Ψ

∂xk
= 0.

� In order to verify that〈∂Ψ
∂xl

(p), Z
〉
gE
gkl|p

∂Ψ

∂xk
(p) = Z if Z ∈ TΨ(p)Ψ(Ω),

it su�ces to check that this is true for Z = ∂iΨ(p), j = 1, . . . , n, since these vectors span
TΨ(p)Ψ(Ω). Thus:

〈∂Ψ
∂xl

(p),
∂Ψ

∂xi
(p)
〉
gE
gkl|p

∂Ψ

∂xk
(p) = gil|pgkl|p

∂Ψ

∂xk
(p) = δki

∂Ψ

∂xk
(p) =

∂Ψ

∂xi
(p).
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